## Problem 21

Find all the solutions of the equation

$$
1+\frac{x}{2!}+\frac{x^{2}}{4!}+\frac{x^{3}}{6!}+\frac{x^{4}}{8!}+\cdots=0
$$

[Hint: Consider the cases $x \geq 0$ and $x<0$ separately.]

## Solution

Following the hint, we will consider the cases where $x$ is nonnegative and negative separately. If $x>0$, then we're adding infinitely many positive terms on the left-there's no way that sum can equal zero. Plugging in $x=0$ gives $1=0$, so for $x \geq 0$, there is no solution. If $x<0$, then the odd powers of the series become negative.

$$
1-\frac{x}{2!}+\frac{x^{2}}{4!}-\frac{x^{3}}{6!}+\frac{x^{4}}{8!}-\cdots
$$

If we write the series compactly, we get

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{n}
$$

Looking at the table of Taylor series on page 768, this looks very similar to the one for $\cos x$.

$$
\cos x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}
$$

Our objective is to make the series we have look like the one for $\cos x$.

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{n} & =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!}(\sqrt{x})^{2 n} \\
& =\cos (\sqrt{x})
\end{aligned}
$$

The problem has reduced to solving

$$
\cos \sqrt{x}=0
$$

where $x>0$.

$$
\sqrt{x}=\frac{1}{2}(2 n+1) \pi, \quad n=0,1,2, \ldots
$$

Squaring both sides gives $x$.

$$
x=\frac{(2 n+1)^{2} \pi^{2}}{4}
$$

Remember, though, that $x$ has to be negative. Therefore, the following values of $x$ satisfy the equation:

$$
\left\{x \left\lvert\, x=-\frac{(2 n+1)^{2} \pi^{2}}{4}\right., n \in \mathbb{N}\right\}
$$

where $\mathbb{N}=\{0,1,2, \ldots\}$.

